Can a Quantum Network “Hacker Proof” Fiber Optic Cables?

Hack Proof Fiber Optic Cable

In 2013, Edward Snowden, a U.S. National Security Agency contractor, leaked documents showing that intelligence agencies were spying on the data of private citizens. One disturbing fact was that the spies tapped into optical fiber cables to access the huge amount of data moving through these cables.

Snowden’s disclosures pushed researchers to use quantum science to make this type of hacking impossible. Finally, there are reports of progress.

THE QUANTUM KEY DISTRIBUTION APPROACH

A startup called Quantum Xchange will access 500 miles of optical cable along the Eastern U.S. coast. Quantum will use this cable to create the country’s first quantum key distribution (QKD) network.

Quantum Xchange’s “QKD approach” would send an encoded message in bits while transmitting the decoding keys as quantum bits, or qubits. Usually in the form of photons, the qubits travel easily along fiber cables. However, any attempt to spy on a qubit would instantly destroy its fragile quantum state, erase any data and leave the mark of an intrusion.

One possible issue is that “trusted nodes” must be used to send quantum keys over long distances. These nodes act as repeaters to boost signals in a typical data cable. Quantum Xchange plans to have 13 trusted nodes along its entire network. At these node points, keys are first turned into bits. Then, they are changed back to a quantum state to be sent on. In other words, a hacker could theoretically steal these bits as they are momentarily vulnerable.

AN ALTERNATE METHOD: QUANTUM TELEPORTATION

Along with this news, the University of Chicago, the Fermi National Accelerator Laboratory and Argonne National Laboratory will jointly develop a test bed to use quantum teleportation to create secure data transmission.

Quantum teleportation would use entanglement to eliminate the risk of hacking. Entanglement creates a pair of qubits (usually photons) in a single quantum state. A change in one photon instantly affects the linked photon, even if they are far apart. Therefore, in theory, it should be impossible to hack data transmission using entanglement. This is so because tampering with one of the qubits would destroy both quantum states.

However, the entanglement method is still confined to research labs. And there are huge challenges to making this approach work in the real world. According to Dr. David Awschalom of the University of Chicago, creating and maintaining entanglement would be extremely difficult over a long haul fiber optic network.

Dr. Awschalom is leading the project involving the university and the national labs. The goal is to have the test bed use a “plug-and-play” approach that will let the researchers experiment and evaluate different techniques for entangling and transmitting qubits.

The U.S. Department of Energy will provide several million dollars to fund the test bed. This test bed will use a 30-mile stretch of installed optical cable between the labs. Members of the Chicago Quantum Exchange will operate the test bed and project. This Exchange consists of 70 scientists and engineers from the three organizations.

Smaller Endoscopes from New, Air-Filled Optical Fiber Bundles?

A new, air-filled optical fiber bundle could dramatically improve medical endoscopes. This technology could also help create endoscopes that produce images using infrared wavelengths. If so, this breakthrough would allow diagnostic procedures that aren’t currently possible.

In the Optical Society (OSA) journal Optics Letters, University of Bath (U.K.) researchers showed that these new fiber optic bundles (called air-clad imaging fibers) deliver resolution equal to the best commercial imaging fibers. And the bundles do this at twice the wavelength range of these fibers. Because of this, these air-clad imaging fibers could help create new, smaller endoscopes with even better resolutions.

HOW ENDOSCOPES WORK

Used in minor surgery and imaging, endoscopes use bundles of optical fibers to obtain images from inside the body. Light that falls on one end of the fiber bundle travels through each fiber to the far end. This process sends a picture as thousands of spots, much like pixels in a digital picture.

TESTING THE BUNDLES

Instead of using cores and claddings of two types of glass, the new bundles use an array of glass cores covered by hollow glass capillaries filled with air. These air-filled capillaries act as the fiber cladding.

To test the imaging fibers, the research team created an air-clad fiber bundle. This bundle matched the resolution of a leading commercial fiber (with the same spacing between cores). The team then stacked multiple, smaller honeycomb structures to place more than 11,000 cores into the fiber.

The researchers used the air-clad fiber bundle and the commercial fiber to image a standard test target image. And the result? The air-clad fiber performed well beyond the wavelength range that a visible camera could detect. And when the researchers switched to an infrared camera, the fiber created a clear image at twice the wavelength that the commercial fiber reached.

REAL-WORLD USE OF FIBER BUNDLES

Along with medical diagnosis and care, the new optical fiber bundles could be used for industrial applications. These uses include monitoring the contents of hazardous machines and viewing the inside of oil and mineral drills. These types of fibers are becoming more and more popular for a variety of purposes.

OFS Laboratories, one of the world’s leading optical fiber research labs, and the research arm of OFS, has performed major work in this area. The development of Microstructure Optical Fibers (MOFs) is one result of this work. The MOFs created by OFS Labs are a new class of optical fibers that are substantially different from conventional optical fibers.

> Learn More our Optical Medical Solutions

Could “Twisted” Fiber Optics Create a 100 Times Faster Internet?

Optical Fiber EndsResearchers at Australia’s RMIT University recently discovered a new fiber optic breakthrough that could lead to 100 times faster internet speeds. This new development detects light that has been twisted into a spiral.

According to research in Nature Communications, developers could upgrade existing fiber optic networks and boost efficiency using this discovery.

HOW IT WORKS

Fiber optic cables use pulses of light to transmit information. However, users can only store that data based on the color of the light and whether the light wave is horizontal or vertical.

The RMIT researchers twisted light into a spiral and created a third dimension for light to carry information – the level of orbital angular momentum, or spin. Dr. Min Gu of RMIT compared it to the double helix spiral of DNA. According to Dr. Gu,  a greater amount of angular momentum allows an optical fiber to carry a larger amount of information.

Researchers have used “twisted light” approaches and orbital angular momentum before. They encoded a greater amount of data in various degrees of twist using these “twisted” methods. In fact, researchers at Boston University and the University of Southern California developed an optic fiber that could twist light. However, the teams used detectors as large as “the size of a dining table.” The RMIT researchers created a reasonably-sized detector that reads the information it holds. The new detector is the width of a human hair.

WHAT IT CAN DO

Providers could upgrade long haul networks around the globe with this new fiber optic technology. These companies include the NBN Co. NBN is deploying Australia’s national broadband network. The company expects to complete this network by 2020.

NBN is “prepared for future demand.” However, they have also stated that fiber optic advances such as this one by RMIT need further testing and acceptance before being deployed. A spokesperson commented, “Laboratories continually test new communications technologies for many years before they are commercialized. Equipment manufacturers and network operators must accept these new methods on a widespread scale before they are ready to be deployed in the field.”

Could Fiber Optic Sensors Help Prevent Power Theft?

Fiber optic sensors could one day catch thieves who steal electricity and materials from overhead power lines. The UK firm Bandweaver recently demonstrated a distributed acoustic sensing (DAS) system that detects invasion and interruption on power lines. The system does this by using back-scattering effects along an optical fiber.

The Cost of Tampering
A major global problem is tampering and theft from power lines. In fact, this activity costs the electric industry an estimated $96 billion a year. Tampering can also interrupt power supplies and lead to operating losses for power companies and national grids.

Detecting and identifying theft when it first happens is the key to solving this problem. The power industry generally sees current solutions as time consuming, inefficient and expensive.

The Demonstration

Working with Dominican Republic power company ELESUR and an infrastructure firm, Bandweaver installed its system at an ELESUR sub-station in Santo Domingo. The team hoped to show how the photonics technology could locate and identify any tampering with overhead lighting and distribution poles connected to a fiber optic cable. They believed that by continually watching just one optical fiber, the system could monitor the entire route for real-time threats 24/7 using existing fiber optic cables.

The team installed the system and waited. When power company employees created different types of disturbances at random power line locations, the DAS system detected and located each problem.

Conclusion
Bandweaver believes that the demonstration’s success proved the ability of its system. The DAS system identified the exact location of each incident and then sent specific information to security systems and alerted company staff.

Possibly the greatest value of the system is that it alerted the power company when a threat began. This “heads up” notification could help companies act before major damage is done. And this capability could help to reduce costs and improve system operations.

New Fiber Optic Gyroscope: More Precise, Smaller than a Grain of Rice

Engineers at the California Institute of Technology have created the world’s smallest fiber optic gyroscope to aid in navigational sensing.  Five hundred times smaller than a regular gyroscope, this new gyro can fit on a grain of rice. This research breakthrough could lead to more accurate fiber optic gyros compared to mechanical units.

WHAT OPTICAL GYROS DO

Advanced fiber optic navigation technology is critical for aircraft, missiles, unmanned aerial vehicles and ground vehicles. These machines and other platforms depend on fiber optic gyroscopes to operate safely.

HOW THEY DO THEY WORK?

A fiber optic gyroscope detects changes in position or direction using the Sagnac effect. In this way, an optical gyro functions similarly to a mechanical gyro. However, the optical gyro operates by using light passing through a coil of optical fiber.

Inside a typical optical gyroscope, a spooled-up optical fiber carries pulses of laser light. Some pulses move clockwise and others go counterclockwise. The gyro measures rotation by detecting tiny changes in how these pulses arrive at a sensor. Researchers have tried to create smaller optical gyros. However, as the size of the gyro shrinks, the signals from its sensor have grown weaker until they are drowned out by “noise” from scattered light.

WHAT THE TEAM DID

The Cal Tech research team designed a low-noise, photonic gyroscope. They etched light-guiding channels onto a two-square-millimeter silicon chip. These channels guide the light in each direction around a separate circle. This layout keeps scattered light from confusing the device’s sensors. The new design also reverses the light’s direction from time to time. This change helps to cancel out much of the related “noise.”

Optical gyroscopes that use the Sagnac effect to measure rotation could eventually be miniaturized onto nano-photonic platforms. However, thermal fluctuations, component drift and fabrication mismatch often limit the signal-to-noise ratio of these gyros. Because a microscale unit would have a weaker signal, researchers have not yet created an integrated nano-photonic fiber optic gyroscope.

Download our Fiber Optic Gyroscope Application Brochure
Learn more about SMM-D1310B FIBER 200kpsi Fiber

We also make aerial fiber optic cable for flight communication systems.

Melting Arctic Ice Could Mean Faster Internet for Some

Have you ever wondered how an e-mail reaches your inbox from a co-worker in Europe? Or how a Facebook message gets to you from a cousin in Africa?

The answer lies beneath the ocean. More than 745,000 miles of submarine cables featuring optical fiber make up most of the actual physical internet. These cables wind between and around continents, carrying almost all of our global internet communication.

Recently, the huge amount of data sent between connected smart devices has begun clogging this network of submarine cables, just as interstate highways become jammed with traffic. One way to deal with this massive data growth is to increase the bandwidth capacity of the physical internet. Another way is to create more direct transmission paths between continents.

Taking It Direct

A new project in Finland hopes to use this second method. The plan is to install a new fiber optic cable route across the Arctic Ocean – the only large water body that is really untouched by submarine cables. While melting sea ice raises tremendous concerns for the health of our planet, it presents an entirely new opportunity to install digital links on a straight course between continents.

For data from Asia to reach Europe, it must travel over thousands of cable miles around Asia, up through the Suez Canal and across the Mediterranean Sea into continental Europe. And while this occurs faster than the blink of an eye (about 253 milliseconds), researchers say that data and communication could travel 30 percent faster over a shorter, more direct cable route through the Arctic.

Faster Connections Are Key

Banks and financial trading groups eagerly await faster connections. Traders depend on powerful, low latency networks to buy and sell securities where milliseconds can affect profit and loss. However, big data would also benefit. Today, internet-connected devices outnumber people on the Earth by an almost 3 to 1 margin. And experts predict that internet traffic between Europe and Asia will triple in the next five years.

 The Challenges

The deployment of this new cable would actually extend an existing cable route through Finland into Germany. And while a feasibility study by the Government of Finland calls the project a “win-win-win” for Europe, Russia and Asia, there are key areas of concern.

First, constructing this new cable route would cost nearly a billion Euros. Secondly, the icy Arctic terrain and harsh weather conditions would certainly present logistical challenges. And there are always issues involving security. However, a separate cable installation linking Tokyo and London by way of Alaska and Canada is already underway.

Our planet needs more almost supersonic connections. We can expect to see more efforts around the globe to reduce data “pile-ups” and speed the delivery of data and communication.

Make Way for High-Density Fiber Optic Cables

High density cable means more fiber density in less space. From 5G to data centers to FTTx, the picture is clear. Everyone uses more bandwidth than ever before. And while bandwidth demand may seem endless, the space to install fiber optic cable isn’t. That’s why being able to install more optical fiber in the same or less space can be a game changer for today’s network operators. And it’s why “High Density” is also a critical word for many service providers today.

With microcables and rollable ribbon cables that increase fiber density while saving on space, OFS is your high-density fiber optic cable solutions provider.

Rolling In the Optical Fiber

Rollable Ribbon fiber optic cables are one of the most exciting outside plant (OSP) cabling technologies today. These cables feature rollable ribbons, the newest fiber ribbon design from OFS. This ribbon can be “rolled” (compacted) and routed like individual fibers, allowing the use of smaller closures and splice trays.

With up to 3,456 fibers, OFS AccuTube®+ Rollable Ribbon (RR) Cables help network operators double their fiber density in the same size duct or space. They also enable very efficient, cost-effective mass fusion splicing and easy individual fiber breakout. This ability helps simplify installation and save on labor costs. And by maximizing duct use, high-density AccuTube+ RR Cables are an excellent choice for connecting very large fiber distribution hubs. They are also very suitable for data centers, FTTx and access networks.

Taking Things Indoors……

With the award-winning AccuRiser RR and AccuFlex® RR Cables, network operators can bring the benefits of rollable ribbon cables indoors. The innovative indoor/outdoor AccuRiser RR Cable helps ease cable installation over ladder racking and through tight bends during routing. This high-density cable is excellent for use in data centers or central offices. It’s also a great choice for building-to-building cable connections along with routing for terminations and frames, and preconnectorized applications.

The strong yet flexible, plenum-rated AccuFlex RR Cable helps prevent installation problems such as packing density, routing and deployment speed. This cable’s flame rating meets NFPA 262, allowing the cable to be installed into air-handling spaces. The AccuFlex RR Cable is an outstanding solution for data centers, central offices and head ends.

With Limited Space, Go Small (and Dense)

To help solve the problem of deploying or upgrading crowded FTTx or underground networks, OFS created the high-density MiDia®Microcable family. Optimized for exceptional air-blown installation, MiDia microcables can help lower installation costs while increasing fiber optic density and capacity in limited spaces. The MiDia Cable portfolio includes MiDia Micro FX CableMiDia Micro GX Cable and MiDia200 Micro FX Cable.

And for network operators who prefer ribbon cables and the benefits of mass fusion splicing, OFS offers the AccuRibbon® DuctSaver® FX Cable. This cable makes optimal use of valuable duct space. It also maximizes the key advantages of air-blown microduct installation: rapid deployment and service turn-up.

To learn more about high-density fiber optic cables, contact OFS at 1-800-fiberhelp.

Rural Broadband Projects to Receive $97 Million Investment from USDA

The United States Department of Agriculture (USDA) will invest $95 million to improve or expand access to broadband internet in the rural U.S. The 12 projects involved will include converting exchanges from copper to optical fiber and also building a fiber-to-the-home network to meet future demand.

These projects will expand access to educational, social and business opportunities for rural subscribers in 11 states by connecting businesses to customers, farmers to markets and students to a world of knowledge.

Location Should Not Determine Access

According to Secretary of Agriculture Sonny Perdue, “A person’s location should not determine whether he or she has access to modern communications infrastructure. That is why the USDA is partnering with businesses and communities by investing in state-of-the-art broadband e-connectivity to remote and rural areas.”

The USDA is making the investments through the Telecommunications Infrastructure Loan Program and the Community Connect Grant Program.

Examples of the Investments

Chibardun Telephone Cooperative, Inc. in Cameron, Wisconsin, will receive a $21.4 million loan to improve outside plant facilities in four of its six exchanges. It will construct 675 miles of fiber-to-the-premises and install associated electronics. It plans to build a fiber-to-the-home network capable of sustaining customer demands in broadband connectivity for the foreseeable future.

Osage Innovative Solutions, LLC in Tulsa, Oklahoma, will receive a $2.7 million grant to construct a hybrid fiber-to-the-premises and fixed wireless system in an unserved and economically depressed portion of the Osage Nation in Osage County. The company will offer speeds up to 100 megabits per second (Mbps) download and 10 Mbps upload. This project will give customers access to high-quality telecommunications to improve economic, education and health care opportunities. Osage will provide a community center where residents can access the internet free of charge.

The Northeast Missouri Rural Telephone Company, in Green City, Missouri, is receiving a $13.7 million loan to convert six exchanges from copper plant to optical fiber to the premises. It will construct nearly 500 route miles of optical fiber.

 

These investments will help to improve the quality of life in rural Arizona, Iowa, Idaho, Maryland, Minnesota, Missouri, Nevada, Oklahoma, South Dakota, Wisconsin and Wyoming.

 

Invisibility Cloaking Could Help to Secure Data Sent Over Optical Fiber

Shades of Harry Potter’s invisibility cloak! A recent study in Optica describes a new way to achieve cloaking invisibility. In this method, researchers manipulated the frequency (color) of light waves passing through an object. This approach overcomes critical shortcomings in existing cloaking technologies. The research team says that this technique could help to secure data sent over optical fiber. It could also improve current technologies for sensing, telecommunications and information processing.

Most current cloaking devices can only conceal an object when it is illuminated with just one color of light. However, sunlight and most other light sources are broadband (i.e., they contain many colors). Also, typical cloaking solutions work by changing the dispersion path of the light around the object to be concealed.

The new solution avoids these problems by allowing light waves to pass through the object, rather than around it, while still avoiding any interaction between the light waves and the object.

To achieve this, the researchers rearranged different colors of broadband light so that the light waves passed through the object without actually “seeing” it. For example, if the object reflected green light, they would then change light in the green portion of the spectrum to another color. In this way, there would be no green light for the object to reflect. Then, once the light wave cleared the object, the cloaking device reversed the shift, returning the wave to its original state.

This spectral cloaking device could be useful in working with current telecommunication networks. These systems use broadband waves as data signals to transmit information over optical fiber. Spectral cloaking could selectively determine which operations are applied to a light wave and which are “made invisible” over certain periods of time. Service providers could use this capability to prevent eavesdroppers from gathering information by probing a fiber optic network with broadband light.

Also, providers could transmit more data over a given line by selectively removing and then reinstating colors that are used as telecommunication data signals. This capability could help to reduce “logjams” as data demands continue to explode.

To learn more, go HERE and HERE.

Get Your “Splice On” With EZ!Fuse™ Splice On Connector System

Meet the new EZ!Fuse Splice On Connector (SOC) Termination System. This system offers an easier-to-use solution that is more reliable and cost-effective than other available splice on and mechanical connectors.

The EZ!Fuse SOC system allows for easy termination and flexibility in the field. This new splice on connector requires no field polishing or epoxy which significantly increases the quality and consistency of field connector termination. It also greatly reduces the total installation time needed when compared to traditional methods. In addition, the connector is easily assembled using a process that requires minimal skills and/or training.                                                                       (more…)