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Abstract

We demonstrate the feasibility of supporting aggregated 800 Gbps in
an 8-core multimode, multicore fiber assembly using existing high
speed PAM4 modulation and bi-directional WDM transmission
platform developed for 400GBASE-SR4.2 technology in IEEE
P802.3cm. Analysis of the receiver QoS (Quality of service),
receiver FEC error statistics and stressed eye closure (SECQ)
suggest enough margin indicating a robust system performance up
to a 32 m of transmission, providing a solution addressing
numerous emerging datacenter problems with high density, small
footprint, and high cooling efficiency.

Keywords: 400 Gb/s; 400GBASE-SRS.2; Datacenter; Datacom;
Multicore MMEF; PAM4; 4-level Pulse Amplitude Modulation; Short
Wavelength Division Multiplexing; High Performance Computing
(HPC): Serve Attachment; Server-to-Switch; Switch-to-switch

1. Introduction

Early work on multicore multimode fiber (coupled to VCSELs either
directly or through a fan-in/out) supporting aggregated speed of 70
Gbps and 120 Gbps suggests its potential applications to address
numerous emerging datacenter problems [1,2,3.4]. The
proliferation of high-performance computing to support artificial

(@)

intelligence driven applications requires higher capacity server and
switches. This demand is driving server attachment speed to 50 and
100 Gbps but the interconnect distance of traditional passive copper
cables is limited to 1.5 m at these data rates, shorter than required.
Active copper cables and fiber arrays are potential solutions, but
multicore multimode (MC-MMF) provides lower heat dissipation
and less space supporting better air flow and cooling compared to
the alternates. Moreover, MC-MMF is also attractive to support
several high density short reach interconnect scenarios inside
datacenter, e.g., MC-MMF fiber/cabling for in-row switch-to-
server applications, for switch-to-switch application with
connection to a pluggable transceiver, or with connection directly
to the ASIC or an on-board optic, with duplex LC connector at the
faceplate to reduce power dissipation required to drive the electrical
signals over the long copper traces. In this paper, MC-MMF is
shown to support high bandwidth as both PAM-4 modulation and
bi-directional WDM ftransmission is demonstrated using a
400GBASE-SR4.2 ftransceiver, over lengths suitable for these
applications.

2. Description of the 8-core MC-MCF
Assembly
The 8-core MC-MMF (Figure la) has eight graded-index Ge-doped

cores of 26 pm in diameter and Numerical Aperture (NA) = 0.3 each.
The pitch between adjacent core is 41.6 pm. The glass outer diameter
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Figure 1. (a) Cross view of the 8-core MC-MMF. (b) Schematic of the 8-core MC-MMF assembly.
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Figure 2. (a) Schematic and (b) image of 400GBASE-SR4.2 transmission over 8-core MC MMF. (c) flow chart of each
50Gbps PAMA4 optical signal through the optical link.

is 165 um and the coated fiber outer diameter is 300 pm. An eight
50/125 pm MMFs fan-in (denoted as port A) and fan-out (denoted as
port B) combiner are spliced to both ends of the MCF to form an
assembly. One end of the eight 50/125 pm MMFs is terminated with
a FC/UPC connector each. The other ends of the eight 50/125 um
MMEFs are taped down to 26 pm in diameter each and combined into
one fiber to splice to the 8-core MC-MMF. The length of the MC-
MMF is 10-meter including two 5-meter sections spliced together
and the length of the 50/125 pm MMFs in fan-in/fan-out is 2 meter
each. The loss from port A of the fan-in to port B of the fan-out is <
5 dB and the cross talk is < -30 dB.

3. High Speed System Transmission
Experiment over 8-core MC-MMF

3.1 Experimental Setup

400 Gbps layer 2/3 full ethernet traffic is generated and received by
a Viavi 400 G Optical Network Tester (ONT). The Viavi generated
400 Gbps electrical signals is loaded to a prototype 400GBASE-
SR4.2 transceiver (FOIT) through a CFP-to-QSFP-DD adaptor.
Transmitter center wavelength, RMS spectral width and optical
power are shown in table 1. Encircled flux (EF) meets IEEE
P802.3cm standard.

Tx# 1 2 3 4 5 6 7 8
Ac(nm) |858.3|858.3|858.3|858.3|910.4 (910.5|910.5|910.5

RMS (nm)| 0.39 | 0.29 | 0.32 | 0.32 | 0.51 | 0.45 | 0.45 | 0.48
power
(dBm)

0.29 | 0.62 | 0.63 | 0.66 | 0.61 | 0.55 | 0.34 | 0.56

Table 1. Transmitter characteristics.

A l-meter MPO-12 (PC, female) to MPO-16 (PC, male) jumper is
used to interface between the 400GBASE-SR4.2 module and a
MPOL16 (UPC, female) to sixteen 50/125 um breakout assembly. The
50/125 um MMFs are terminated with FC/UPC connector each.
Eight out of 16 MMFs of the MPO16 breakout assembly are active
in transmitting and receiving optical signals. Through four of the

eight 50/125 um MMFs of the fan-in, 400 Gbps 850 nm signals (4 *
50 Gbps PAMA4) are coupled into four cores of the MCF at A-ports
(Al to A4), looped back to the MCF by connecting four B-ports (B1-
B4) to the other four A-ports (A5-A8) and eventually received at
Rx1-4 through the B5-B8 ports. 910 nm 50G PAM4 signals transmit
through the same optical path in the opposite direction. Figure 2
shows the diagram (a) and image (b) of the system transmission setup
and the flow chart (c) of each 50 Gbps PAM4 optical signal through
the optical link.

Including all jumpers and MCF, the total transmission distance of 400
Gbps optical traffic is 32 meters where 20-meters is in the 8-core MC-
MMEF, 8 m in the fan-in/fan-out and 4 meters in 50/125 pm MMF
MPO jumpers. The optical signals go through 2 MPO connections, 4
FC/FC connections, 4 fan-in/fan-out combiner splicing and 2 MCF-
MCF splicing.

3.2 Results and Discussions
3.2.1 Receiver QoS

400 Gbps layer 2/3 Ethernet traffic at 100% bandwidth utilization is
transmitted using the MC-MMF setup described in the previous
section. All layers are ok after more than 17 hours transmission, free
from any bit error and frame error. The screen capture of the Rx QoS
in MAC/IP layer is shown in Figure 3. The total bit errors corrected
is below 5 x 107 prior FEC, three orders better than KP4 FEC
threshold, only slightly increased than the bit errors introduced by the
transmitter itself (1.89 * 10”7). No un-correctable errors are recorded.
Note that all eight cores of the MCF are active simultaneously and all
optical PAMA4 signals go through the MCF to MMF fan-in/fan-out
twice and the MCF-MCF splice twice. This is a more stressed
condition in the MCF link connection than loading 800 Gbps signals
to 8 cores of MCF using two 400GBASE-SR4.2 transceivers (100
Gbps BIDi transmission per core). Thus, it demonstrated the
capability of the 8-core MCF to carry 800 Gbps aggregated signals.
Error free transmission of 400 Gbps ethernet traffic over a long time
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Figure 3. Screen capture of Rx QoS in MAC/IP layer after 17 hours 38 minutes error free transmission.

is repeated in four different 8-core MC-MMF assemblies using the
same assembly design and system testing setup described in this

paper.
3.2.2 Attenuation

The total attenuation including fan-in/fan-out, MCF and all
connections/splices of the optical link configuration shown in Figure
2 is 1.26 dB (min) to 2.55 dB (max) at 910 nm and 2.48 dB (min)
to 3.56 dB (max) at 850 nm using the eight transmitters of the
prototype 400GBASE-SR4.2 transceiver.

3.2.3 Noise Power due to Inter-core Crosstalk and
Receiver FEC Error Statistics

No. of bkbk MCF
Symbols
0| 95.88011200| 95.84458900
1 0.11559400| 0.15484400
2 0.00028500| 0.00055900
3 0.00000300| 0.00000800
4 0.00000000| 0.00000032
5 0.00000000| 0.00000002
6 0.00000000| 0.00000000
7 0.00000000| 0.00000000
8 0.00000000| 0.00000000
9 0.00000000| 0.00000000
10 0.00000000| 0.00000000
11 0.00000000| 0.00000000
12 0.00000000| 0.00000000
13 0.00000000| 0.00000000
14 0.00000000| 0.00000000
15 0.00000000| 0.00000000

Table 2. Receiver FEC error statistics in percentage for bk2bk
and MIC-MNMF link shown in Figure 2.

The noise power introduced by the inter-core crosstalk is estimated
at each receiving end with all transmitters connected except the one
for the channel under test. The noise power leaked from the other

cores for the configuration in Figure 2 is measured to be -30.13 dBm
(min) to -27.87 dBm (max) at 850 nm and -31.28 dBm (min) to -
26.35 dBm (max) at 910 nm. (Note that since two cores instead of
one core are in dark in the loop-back testing configuration, the noise
power estimated are from six out of seven cores infroducing inter-
core crosstalk. The noise power experienced in the transmission with
all channels running is expected to be slightly higher than the above
measured value.) Due to the distributed nature of the inter-core
crosstalk, the negative impact of the noise introduced by the crosstalk
is expected to be demonstrated as longer errored symbols. Table 2
shows a comparison of the receiver FEC error statistics (in
percentage) for the bk2bk (4 m) and with MC-MMF (32 m). Bk2bk
has errored symbols up to symbol # 3 while MC-MMF link spreads
the errored symbols to # 4 & 5. However, there is no error for the rest
10 symbols (# 6-15) indicating a robust 400 G transmission and a
minor negative impact introduced by the crosstalk.

3.2.4 PAMH4 Eyes and Stressed Eye Closure
(SECQ)

Optical eves at each FC connector of the fan-out is measured using a
Keysight 81000D oscilloscope. The fransmitter is a FOIT
L100GBASE-BIDi module. The testing setup configuration is the
same as in reference [5] with the 8-core MC-MMF assembly
replacing the OMS fiber under test. Four port B of the fanout are
connected to four port A of the fan-in, same as in the configuration
described in Figure 2. Optical PAM4 eyes after 5-taps FFE (as
recommended for TDEXQ measurements in IEEE P802.3 standard)
is measured at each FC connector of the fan-in (910 nm) and fan-out
(850 nm) using a Keysight 81000D Oscilloscope (shown in Figure 4:
left -910 nm and right-850 nm). SECQ seen by the receiver after 30
m transmission is 2.06 dB, 2.07 dB, 2.02 dB and 2.19 dB at 850 nm
and 1.87 dB, 2.00dB, 2.43 dB, and 1.89 dB at 910 nm. The maximum
2.43 dB is 2 dB less than the 4.5 dB maximum SECQ specification
for 400GBASE-SR4.2 in IEEE P802.3 cm standard, indicating
enough margin for a robust system performance.
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Figure 4. SECQ seen after 30 m transmission. Note that 50/125 am jumpers interfacing transmitter/scope optical head
and of the fan-in/out are taken account in the 30 m length but not shown in the graph for simplicity.

4. Conclusions

400 Gbps layer2/3 full ethernet traffic loaded to a protype
400GBASE-SR4.2 transceiver is successfully transmitted over 32 m
parallel MMF fiber/cabling including 20 m in an 8-core MC-MMF,
8 m in fan-in/fan-out and 6 m in OM4 MMF MPO cabling. Receiver
QoS in MAC/IP layer, attenuation, noise power due to inter-core
crosstalk and SECQ are measured. The test passes the receiver QoS
for an extended time (=17 hours) and is repeatable for four 8-core
MC-MMF assemblies with the same design. Receiver FEC error
statistics shows a negative but minor impact from the inter-core
crosstalk. Max SECQ seen after 30 m transmission is 2 dB below the
specification of 4.5 dB for IEEE P802.3 cm standards, demonstrating
enough margin for a robust performance over 30 m, a distance
suitable for or exceeding the need of several datacom applications
including HPC server attachment and switch-switch interconnects in
datacenter. The optical link has all 8-cores active simultaneously and
includes multiple connections/splices (6 MPO or FC connections and
6 MC-MC splices). This is a more stressed condition than having 8-
cores carrying 2 * 400 Gbps signals using two 400GBASE-SR4.2
transceivers. Thus, it indicates the feasibility of the 8-core MC-MMF
supporting 800 Gbps aggregated speed using existing PAM4 and
WDM platform developed for 400GBASE-SR4.2 VCSEL-MMF
technology for datacomyHPC applications.
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