We use cookies to help us provide you with a more enhanced and personalized experience adapted to your interests.
By using our site you agree to our Terms of Use and Privacy Policy, including our use of cookies.
Exit

Tag Archive: optical fiber

  1. New Ways to Twist and Shift Light

    2 Comments

    The National Physical Laboratory (NPL) recently conducted photonics research that may lead to new quantum technologies and telecom systems. The researchers discovered unexpected qualities in light that could, in the long term, lead to completely new electronic devices and applications.

     

    Light is frequently used in electronics involved in telecommunications and computing. One good example of this is how light is used in optical fiber. Optical fiber and fiber optic cables are used to transmit many types of communication around the world, including telephone calls and internet connections.

     

    As mentioned in Physical Review Letters, the NPL researchers studied whether and how light can be controlled in an optical ring resonator. This resonator is a tiny device that can store extremely high light intensities. In an optical ring resonator, wavelengths of light resonate around the device. A comparison would be how some “whispers” can travel around a  “whispering gallery” and be heard on the other side.

     

    In a first-ever study, the researchers used optical ring resonators to pinpoint the interaction of two kinds of spontaneous symmetry breaking. The team displayed new ways to manipulate light by (1) studying how time varied between pulses of light and (2) how the light was polarized.

     

    Typically, light follows what is called “time reversal symmetry.” This principle means that if time is reversed, light should return to where it started. However, in the NPL research, at high light intensities, symmetry was broken within the optical ring resonators. A lead scientist on the project noted that, when the ring resonator was seeded with short pulses, the circulating pulses inside the resonator would arrive either before or after the seed pulse. However, they would never arrive at the same time. This discovery could be potentially used to combine and rearrange optical pulses in telecommunications networks.

     

    The researchers also learned that light can suddenly change its polarization in ring resonators. A related example would be you picking a guitar string in a vertical direction, but then having the string begin to vibrate in either a circular clockwise or counter-clockwise direction. The researchers believe that the results of these experiments will not only help to direct the development of improved optical ring resonators (such as for atomic clocks for exact time-keeping). They also feel that these findings will also help scientists to understand how they can control light in photonic circuits in sensors and in quantum technologies.

     

    According to Pascal Del’Haye, NPL Senior Research Scientist, “Optics have become an important part of telecom networks and computing systems. Understanding how we can manipulate light in photonic circuits will help to unlock a whole host of new technologies. These include better sensors and new quantum capabilities, which will become ever more important in our everyday lives.”

     

     

  2. Lighting Up Dark Fiber

    Leave a Comment

    Last month, internet speeds in Jackson, Mississippi, jumped from 1 Gb to 100 Gb. This leap forward is part of the city’s work to light up “dark fiber” in the robust fiber optic network that it owns.

    The Origin of Dark Fiber

    The term “dark fiber” refers to unused or underused fiber optic infrastructure (optical fibers, fiber cables and repeaters). Because it’s expensive to deploy cable (especially under oceans), companies typically install more fiber than they will need. This fact was especially true during the dot.com boom of the 1990s. However, after the bust of the early 2000s, many companies either went bankrupt or merged. The result is that today, in addition to “lit fibers” (fibers currently transmitting data by light), there are many “dark fibers” (unused fibers) within the same networks.


    Cities Lighting Up

    Because it’s possible to buy or lease these fibers, some cities and companies see using dark fiber as an appealing way to save money or create a new revenue stream. However, there are other factors to consider because using dark fiber isn’t straightforward. Buying and managing a fiber network takes skills that many organizations simply don’t have. Also, when a group starts selling network bandwidth, it takes on the role of becoming an ISP.

    And on top of this, success isn’t always guaranteed. Take the example of California’s Santa Monica CityNet. In 2014, CityNet became the first 100 gigabit municipal network in the country. However, in its efforts to lease dark fiber, CityNet has signed up less than 2 percent of the business market since 2006. It has also collected only about $2.1 million in revenue over that time.

    Other Uses

    At least for now, dark fiber still has staying power. One factor driving its use is cloud computing which requires greater bandwidth. However, dark fiber could face greater competition as cities get “smarter” and 5G wireless communications roll out.

    Ironically, dark fiber’s strength may come through uses besides connectivity. At the Lawrence Berkeley National Laboratory, Dr. Jonathan Ajo-Franklin is using dark fiber to measure seismic signals. Dr. Ajo-Franklin’s team gained permission to access a section of a dark fiber network between Sacramento and Calusa, California. During a seven-month experiment, the team collected about 300 terabytes of data. Ultimately, they found that the same dark fiber installed for communications was also useful in making distributed measurements. These measurements included seismic wave fields, temperature, strain and vibrations that can affect infrastructure (such as the number of cars on a road). In other words, an unused fiber installed for a telecom network might also be used in sensing.

    What’s more, by using dark fiber, the team saved a substantial amount of money by replacing a critical, huge array of thousands of individual point sensors with an existing, installed fiber optic cable.

  3. 5G: What’s All the Hoopla About?

    Leave a Comment

    There’s been lots of excitement and even some “hype” around the idea of 5G. But what is it really? Does it mean just faster internet? Will it really be that much better than 4G? Many people are asking these questions as the FCC begins to auction the first licenses for the airwaves that will carry 5G service.

     

    What Is 5G, Really?

    5G will be up to 100 times faster than today’s cellular connections – and even faster than many home broadband services. But it’s not just about speed. Networks will have greater capacity and respond faster than earlier wireless services. More people and devices will work at the same time on the same network without slowing it to a crawl. And it will do all of this with lower latency. Latency is the time delay between a device contacting the network and receiving a response.

     

    This improved latency will help to bring about some of the most amazing tech trends on the horizon. And while 5G may not change your life right away, it will certainly bring some totally new technologies to life. For now, here are a few of the most exciting apps and technologies that 5G will enable.

     

    Promising 5G Applications

    Self-driving vehicles – Self-driving cars will be a common sight with the next generation of wireless service.  And 5G will make vehicle-to-vehicle communication happen – where cars can almost instantly share information between them on their location, speed, acceleration, direction and steering. Many experts believe that this feature will become the greatest lifesaving advance in the auto industry in more than a decade. Using this, cars will know before their drivers when another car moves into your blind spot or when a dump truck that’s six vehicles ahead suddenly stops.

     

    Telesurgery – Remote surgery isn’t new. However, 5G could make a huge difference in providing medical care to millions in distant locations, along with training doctors remotely in surgery and other specialties.

     

    Virtual Reality – For truly realistic virtual reality (VR), a wireless network must carry tons of data. And while it must be fast, the network must also handle this data deluge to create a life-like VR experience. It will take 5G to make this happen.

     

    Drones: 5G technology will let drones talk to one another, helping prevent overhead accidents while in flight.

     

    5G wireless networks can make many of the technologies, applications and experiences that we’ve been waiting for a reality.

  4. Smaller Endoscopes from New, Air-Filled Optical Fiber Bundles?

    Leave a Comment

    A new, air-filled optical fiber bundle could dramatically improve medical endoscopes. This technology could also help create endoscopes that produce images using infrared wavelengths. If so, this breakthrough would allow diagnostic procedures that aren’t currently possible.

     

    In the Optical Society (OSA) journal Optics Letters, University of Bath (U.K.) researchers showed that these new fiber optic bundles (called air-clad imaging fibers) deliver resolution equal to the best commercial imaging fibers. And the bundles do this at twice the wavelength range of these fibers. Because of this, these air-clad imaging fibers could help create new, smaller endoscopes with even better resolutions.

     

    HOW ENDOSCOPES WORK

    Used in minor surgery and imaging, endoscopes use bundles of optical fibers to obtain images from inside the body. Light that falls on one end of the fiber bundle travels through each fiber to the far end. This process sends a picture as thousands of spots, much like pixels in a digital picture.

     

    TESTING THE BUNDLES

    Instead of using cores and claddings of two types of glass, the new bundles use an array of glass cores covered by hollow glass capillaries filled with air. These air-filled capillaries act as the fiber cladding.

     

    To test the imaging fibers, the research team created an air-clad fiber bundle. This bundle matched the resolution of a leading commercial fiber (with the same spacing between cores). The team then stacked multiple, smaller honeycomb structures to place more than 11,000 cores into the fiber.

     

    The researchers used the air-clad fiber bundle and the commercial fiber to image a standard test target image. And the result? The air-clad fiber performed well beyond the wavelength range that a visible camera could detect. And when the researchers switched to an infrared camera, the fiber created a clear image at twice the wavelength that the commercial fiber reached.

     

    REAL-WORLD USE OF FIBER BUNDLES

    Along with medical diagnosis and care, the new optical fiber bundles could be used for industrial applications. These uses include monitoring the contents of hazardous machines and viewing the inside of oil and mineral drills. These types of fibers are becoming more and more popular for a variety of purposes.

     

    OFS Laboratories, one of the world’s leading optical fiber research labs, and the research arm of OFS, has performed major work in this area. The development of Microstructure Optical Fibers (MOFs) is one result of this work. The MOFs created by OFS Labs are a new class of optical fibers that are substantially different from conventional optical fibers.

     

     

  5. Could “Twisted” Fiber Optics Create a 100 Times Faster Internet?

    2 Comments

    Researchers at Australia’s RMIT University recently discovered a new fiber optic breakthrough that could lead to 100 times faster internet speeds. This new development detects light that has been twisted into a spiral.

     

    According to research in Nature Communications, developers could upgrade existing fiber optic networks and boost efficiency using this discovery.

     

    HOW IT WORKS

    Fiber optic cables use pulses of light to transmit information. However, users can only store that data based on the color of the light and whether the light wave is horizontal or vertical.

     

    The RMIT researchers twisted light into a spiral and created a third dimension for light to carry information – the level of orbital angular momentum, or spin. Dr. Min Gu of RMIT compared it to the double helix spiral of DNA. According to Dr. Gu,  a greater amount of angular momentum allows an optical fiber to carry a larger amount of information.

     

    Researchers have used “twisted light” approaches and orbital angular momentum before. They encoded a greater amount of data in various degrees of twist using these “twisted” methods. In fact, researchers at Boston University and the University of Southern California developed an optical fiber that could twist light. However, the teams used detectors as large as “the size of a dining table.” The RMIT researchers created a reasonably-sized detector that reads the information it holds. The new detector is the width of a human hair.

     

    WHAT IT CAN DO

    Providers could upgrade networks around the globe with this new fiber optic technology. These companies include the NBN Co. NBN is deploying Australia’s national broadband network. The company expects to complete this network by 2020.

     

    NBN is “prepared for future demand.” However, they have also stated that fiber optic advances such as this one by RMIT need further testing and acceptance before being deployed. A spokesperson commented, “Laboratories continually test new communications technologies for many years before they are commercialized. Equipment manufacturers and network operators must accept these new methods on a widespread scale before they are ready to be deployed in the field.”

  6. Could Fiber Optic Sensors Help Prevent Power Theft?

    Leave a Comment

    Fiber optic sensors could one day catch thieves who steal electricity and materials from overhead power lines. The UK firm Bandweaver recently demonstrated a distributed acoustic sensing (DAS) system that detects invasion and interruption on power lines. The system does this by using back-scattering effects along an optical fiber.

     

    The Cost of Tampering
    A major global problem is tampering and theft from power lines. In fact, this activity costs the electric industry an estimated $96 billion a year. Tampering can also interrupt power supplies and lead to operating losses for power companies and national grids.

     

    Detecting and identifying theft when it first happens is the key to solving this problem. The power industry generally sees current solutions as time consuming, inefficient and expensive.

     

    The Demonstration

    Working with Dominican Republic power company ELESUR and an infrastructure firm, Bandweaver installed its system at an ELESUR sub-station in Santo Domingo. The team hoped to show how the photonics technology could locate and identify any tampering with overhead lighting and distribution poles connected to a fiber optic cable. They believed that by continually watching just one optical fiber, the system could monitor the entire route for real-time threats 24/7 using existing fiber optic cables.

     

    The team installed the system and waited. When power company employees created different types of disturbances at random power line locations, the DAS system detected and located each problem.

     

    Conclusion
    Bandweaver believes that the demonstration’s success proved the ability of its system. The DAS system identified the exact location of each incident and then sent specific information to security systems and alerted company staff.

     

    Possibly the greatest value of the system is that it alerted the power company when a threat began. This “heads up” notification could help companies act before major damage is done. And this capability could help to reduce costs and improve system operations.

     

     

     

     

     

     

  7. New Fiber Optic Gyroscope: More Precise, Smaller than a Grain of Rice

    Leave a Comment

    Engineers at the California Institute of Technology have created the world’s smallest fiber optic gyroscope. Five hundred times smaller than a regular gyroscope, this new gyro can fit on a grain of rice. This research breakthrough could lead to more accurate fiber optic gyros compared to mechanical units.

     

    WHAT OPTICAL GYROS DO

    Advanced fiber optic navigation technology is critical for aircraft, missiles, unmanned aerial vehicles and ground vehicles. These machines and other platforms depend on fiber optic gyroscopes to operate safely.

     

    HOW THEY DO THEY WORK?

    A fiber optic gyroscope detects changes in position or direction using the Sagnac effect. In this way, an optical gyro functions similarly to a mechanical gyro. However, the optical gyro operates by using light passing through a coil of optical fiber.

     

    Inside a typical optical gyroscope, a spooled-up optical fiber carries pulses of laser light. Some pulses move clockwise and others go counterclockwise. The gyro measures rotation by detecting tiny changes in how these pulses arrive at a sensor. Researchers have tried to create smaller optical gyros. However, as the size of the gyro shrinks, the signals from its sensor have grown weaker until they are drowned out by “noise” from scattered light.

     

    WHAT THE TEAM DID

    The Cal Tech research team designed a low-noise, photonic gyroscope. They etched light-guiding channels onto a two-square-millimeter silicon chip. These channels guide the light in each direction around a separate circle. This layout keeps scattered light from confusing the device’s sensors. The new design also reverses the light’s direction from time to time. This change helps to cancel out much of the related “noise.”

     

    Optical gyroscopes that use the Sagnac effect to measure rotation could eventually be miniaturized onto nano-photonic platforms. However, thermal fluctuations, component drift and fabrication mismatch often limit the signal-to-noise ratio of these gyros. Because a microscale unit would have a weaker signal, researchers have not yet created an integrated nano-photonic fiber optic gyroscope.

  8. Make Way for High-Density Fiber Optic Cables

    Leave a Comment

    More fiber density in less space. From 5G to data centers to FTTx, the picture is clear. Everyone uses more bandwidth than ever before. And while bandwidth demand may seem endless, the space to install fiber optic cable isn’t. That’s why being able to install more optical fiber in the same or less space can be a game changer for today’s network operators. And it’s why “High Density” is also a critical word for many service providers today.

     

    With microcables and rollable ribbon cables that increase fiber density while saving on space, OFS is your high-density fiber optic cable solutions provider.

     

    Rolling In the Optical Fiber

    Rollable Ribbon fiber optic cables are one of the most exciting outside plant (OSP) cabling technologies today. These cables feature rollable ribbons, the newest fiber ribbon design from OFS. This ribbon can be “rolled” (compacted) and routed like individual fibers, allowing the use of smaller closures and splice trays.

     

    With up to 3,456 fibers, OFS AccuTube®+ Rollable Ribbon (RR) Cables help network operators double their fiber density in the same size duct or space. They also enable very efficient, cost-effective mass fusion splicing and easy individual fiber breakout. This ability helps simplify installation and save on labor costs. And by maximizing duct use, high-density AccuTube+ RR Cables are an excellent choice for connecting very large fiber distribution hubs. They are also very suitable for data centers, FTTx and access networks.

     

    Taking Things Indoors……

    With the award-winning AccuRiser RR and AccuFlex® RR Cables, network operators can bring the benefits of rollable ribbon cables indoors. The innovative indoor/outdoor AccuRiser RR Cable helps ease cable installation over ladder racking and through tight bends during routing. This high-density cable is excellent for use in data centers or central offices. It’s also a great choice for building-to-building cable connections along with routing for terminations and frames, and preconnectorized applications.

     

    The strong yet flexible, plenum-rated AccuFlex RR Cable helps prevent installation problems such as packing density, routing and deployment speed. This cable’s flame rating meets NFPA 262, allowing the cable to be installed into air-handling spaces. The AccuFlex RR Cable is an outstanding solution for data centers, central offices and head ends.

     

    With Limited Space, Go Small (and Dense)

    To help solve the problem of deploying or upgrading crowded FTTx or underground networks, OFS created the high-density MiDia®Microcable family. Optimized for exceptional air-blown installation, MiDia microcables can help lower installation costs while increasing fiber optic density and capacity in limited spaces. The MiDia Cable portfolio includes MiDia Micro FX CableMiDia Micro GX Cable and MiDia200 Micro FX Cable.

     

    And for network operators who prefer ribbon cables and the benefits of mass fusion splicing, OFS offers the AccuRibbon® DuctSaver® FX Cable. This cable makes optimal use of valuable duct space. It also maximizes the key advantages of air-blown microduct installation: rapid deployment and service turn-up.

     

    To learn more about high-density fiber optic cables, visit our website or contact OFS at 1-800-fiberhelp.

     

     

     

  9. Optical Fiber “Senses” Change in Surroundings

    Leave a Comment

    Companies use optical fiber as a sensor to detect changes in temperature and pressure. This technique is often used to monitor structures including bridges and gas pipelines.

    Now researchers at Ecole Polytechnique Fédérale De Lausanne (EPFL) have discovered a new method where optical fibers can identify when they are in contact with a liquid or a solid. The researchers accomplished this by generating a sound wave with help from a light beam inside the optical fiber.

    A Sensor That Doesn’t Disrupt the Light

    Four factors affect the light carried by a glass optical fiber: intensity, phase, polarization and wavelength. These factors can change when something stretches the fiber or the temperature varies. These changes let the fiber act as a sensor by detecting cracks in structures or temperature changes. However, until now, users could not know what was actually happening around the fiber without letting light escape, which interrupts the light path.

    The method from EPFL uses a sound wave generated inside the fiber. This hyper-frequency wave regularly bounces off of the fiber’s walls. This echo varies at different locations depending on the type of material that the wave contacts. The echoes leave an imprint on the light that users can read when the beam exits the fiber. While users can study this imprint to detect and map out the fiber’s surroundings, it is so faint that it barely disturbs the light within the fiber. In fact, users could employ this technique to sense what is occurring around a fiber and send light-based information at the same time.

    In experiments, the researchers submerged their fibers in water and then in alcohol, and left them out in the open air. Each time, their system correctly identified the change in the fibers’ surroundings. The group expects their technique to have many potential applications by detecting water leakage, as well as the density and salinity of fluids that touch the fiber.

    Spatial and Temporal Detection

    This method discerns changes in the surroundings with a time-based method. Each wave impulse is created with a slight time jag. Then, when the beam arrives, the delay is reflected. The researchers can see what any disturbances were and determine their location. The group can currently locate disturbances to within 10 meters, but have the technical means and expect to increase accuracy down to one meter.

    To read and learn more, go HERE.

  10. Invisibility Cloaking Could Help to Secure Data Sent Over Optical Fiber

    Leave a Comment

    Shades of Harry Potter’s invisibility cloak! A recent study in Optica describes a new way to achieve cloaking invisibility. In this method, researchers manipulated the frequency (color) of light waves passing through an object. This approach overcomes critical shortcomings in existing cloaking technologies. The research team says that this technique could help to secure data sent over optical fiber. It could also improve current technologies for sensing, telecommunications and information processing.

     

    Most current cloaking devices can only conceal an object when it is illuminated with just one color of light. However, sunlight and most other light sources are broadband (i.e., they contain many colors). Also, typical cloaking solutions work by changing the dispersion path of the light around the object to be concealed.

     

    The new solution avoids these problems by allowing light waves to pass through the object, rather than around it, while still avoiding any interaction between the light waves and the object.

     

    To achieve this, the researchers rearranged different colors of broadband light so that the light waves passed through the object without actually “seeing” it. For example, if the object reflected green light, they would then change light in the green portion of the spectrum to another color. In this way, there would be no green light for the object to reflect. Then, once the light wave cleared the object, the cloaking device reversed the shift, returning the wave to its original state.

     

    This spectral cloaking device could be useful in working with current telecommunication networks. These systems use broadband waves as data signals to transmit information over optical fiber. Spectral cloaking could selectively determine which operations are applied to a light wave and which are “made invisible” over certain periods of time. Service providers could use this capability to prevent eavesdroppers from gathering information by probing a fiber optic network with broadband light.

     

    Also, providers could transmit more data over a given line by selectively removing and then reinstating colors that are used as telecommunication data signals. This capability could help to reduce “logjams” as data demands continue to explode.

     

    To learn more, go HERE and HERE.


February 12, 2019 - Congratulations to Michele Neifing for being named BICSI ICT Woman of the Year. - Read Press Release! >>


February 4, 2019 - In Photonics Spectra, Andrei Stolov outlines a study covering the effect of harsh undersea and downhole conditions on specialty optical fibers. - Read Article! >>


January 28, 2019 - FEC Completes Expansion of Optical Fiber Production Capacity at OFS. - Read Press Release! >>