We use cookies to help us provide you with a more enhanced and personalized experience adapted to your interests.
By using our site you agree to our Terms of Use and Privacy Policy, including our use of cookies.
Exit

Tag Archive: submarine optical fiber

  1. Fiber Optic Cables as Undersea Seismic Monitors?

    Leave a Comment

    Detecting ocean-floor seismic activity is crucial to our understanding of the interior structure and dynamic behavior of the Earth. However, with 70% of the planet’s surface covered by water and only a handful of permanent, ocean-bottom seismometer stations, very little overall seismic activity is actually recorded.

     

    Now, a group of researchers from the United Kingdom, Italy and Malta have found a way to use submarine fiber optic cables already deployed on the ocean floor as seismic detectors. In a paper published in the journal Science, the research group outlines how they discovered this capability and how it would operate.

     

    Giuseppe Marra, a member of the group, was testing an underground fiber cable between two locations in the United Kingdom. Noticing a small slowdown in signal delivery, he traced it to tiny vibrations bending the light. He then determined that the vibrations were caused by a remote earthquake. This discovery inspired him to explore using fiber optic cables as seismic detectors.

     

    (more…)

  2. Catch the Wave with TeraWave® SCUBA 125 Ocean Optical Fiber

    Leave a Comment

    OFS expanded its ocean product portfolio by introducing the new TeraWave SCUBA 125 Optical Fiber at the OFC Conference in San Diego, California, held March 12-15.

    This latest submarine fiber from OFS is optimally designed to deliver excellent performance for coherent transport submarine systems. The effective area of TeraWave SCUBA 125 Fiber is matched to terrestrial G.654.E fibers for reliable performance from the ocean landing site to terrestrial networks. In addition, this fiber offers outstanding cabling performance in the C- and L-bands along with world-class attenuation.

    The effective area of 125 square-microns reduces non-linearities, enabling the launch of higher signal power when compared to G.652 fibers as well as most G.654.B fibers, while the ultra-low attenuation of ≤ 0.158 dB/km (average) reduces signal noise. Together, these capabilities enable the launch of higher signal power into the span and lower amplifier noise. This, in turn, allows higher transmission speeds with more wavelengths over trans-Atlantic distances than ultra-low-loss G.652 fibers. (more…)