We use cookies to help us provide you with a more enhanced and personalized experience adapted to your interests.
By using our site you agree to our Terms of Use and Privacy Policy, including our use of cookies.
Exit

Tag Archive: fiber optic networks

  1. FAQ Guide to Laser-Optimized Fiber

    Leave a Comment

    As transmission speeds over optical fiber networks in the enterprise increase to 10 Gigabits per second (Gb/s) and beyond, a relatively new term – “laser-optimized fiber” – has crept into the industry’s vocabulary. What is laser-optimized fiber? What do you need to know about it? And what exactly does the term “laser- optimized” mean? Understanding the answers to these questions will help you prepare for the latest wave in optical communications for enterprise networks.Laser Fiber

    Why have optical fibers been “optimized” for use with lasers?

    Older “legacy” optical fiber systems (Token Ring, Ethernet, FDDI, ATM) used in premises applications operated at relatively slow speeds in the range of 4 to 155 Megabits per second (Mb/s). These systems utilized inexpensive light sources called Light Emitting Diodes (LEDs), which were perfectly adequate for these slower speeds. Multimode fibers used in these systems were rated to certain minimum bandwidths, typically:

    • 160 MHz/km over 62.5/125 μm fiber at 850 nm
    • 500 MHz/km over 50/125 μm fiber at 850 nm
    • 500 MHz/km over both products at 1300 nm

    These fibers were tested for bandwidth using an Overfilled Launch (OFL) test method, which accurately replicated real-life performance with an LED.

    As the demand for bandwidth and higher throughput increased, especially in building and campus backbones, LEDs could not keep pace. With a maximum modulation rate of 622 Mb/s, LEDs would not support the 1 Gb/s and greater transmission rates required. One could make use of traditional lasers (Fabry-Perot, Distributed Feedback) typically used over single-mode fiber.  However these are considerably more expensive due to the higher performance characteristics required for long-distance transmission on single-mode fiber.

    In response, the industry developed a new high-speed laser light source called a Vertical Cavity Surface Emitting Laser (VCSEL). These VCSELs are inexpensive and well suited for low-cost 850 nm multimode transmission systems, allowing for data rates of 1 Gb/s and 10 Gb/s in the enterprise. With the emergence of these VCSELs, multimode fiber had to be “optimized” for operation with lasers.

    >> Download Our Guide Now

    What’s the Difference Between a VCSEL and an LED?

    VCSELs provide higher power, narrower spectral width, smaller spot size and faster data rates than LEDs. All of these advantages add up to a significant performance boost. This assumes, of course, the fiber itself does not hinder performance. To understand why this could occur, we need to recognize the differences between VCSELs and LEDs and how they transmit signals along a multimode fiber.

    All LEDs produce a smooth, uniform output that consistently fills the entire fiber core and excites the many hundreds of modes in the fiber. The bandwidth of the fiber is determined by the aggregate performance of all the modes in the fiber. If a few modes lag behind or get ahead due to modal dispersion, they have little impact on bandwidth because many other modes are carrying the bulk of the signal.

    The energy output of a VCSEL is smaller and more concentrated than that of an LED. As a result, VCSELs do not excite all the modes in a multimode fiber, but rather only a restricted set of modes. The bandwidth of the fiber is dictated by this restricted set of modes, and any modes that lag or get ahead have a much greater influence on bandwidth.

    Typically, a VCSEL’s power would be concentrated in the center of the fiber, where older fibers were prone to defects or variations in the refractive index profile (the critical light-guiding property in the core of the fiber), resulting in poor transmission of the signal. That is why some fibers may actually perform poorly with a VCSEL compared to an LED.

    To complicate matters, the power profile of a VCSEL is nonuniform and fluctuates constantly. It changes sharply across its face, varies from VCSEL to VCSEL and changes with temperature and vibrational fluctuations. Consequently, individual VCSELs will excite different modes in a certain fiber at any given time. And because different modes carry varying amounts of power, the fiber’s bandwidth can vary in an unpredictable manner.

    Why are laser-optimized fibers the best choice for use with VCSELs?

    With the advent of VCSELs, it became apparent that the traditional multimode fiber deployed for LED systems did not take full advantage of the performance benefits of VCSELs.

    To fully capitalize on the benefits that VCSELs offered, fiber manufacturers developed laser-optimized multimode fiber (LOMMF). LOMMF is specifically designed, fabricated and tested for efficient and reliable use with VCSELs.

    LOMMFs should have a well-designed and carefully controlled refractive index profile to ensure optimum light transmission with a VCSEL. Precise control of the refractive index profile minimizes modal dispersion, also known as Differential Mode Delay (DMD). This ensures that all modes, or light paths, in the fiber arrive at the receiver at about the same time, minimizing pulse spreading and, therefore, maximizing bandwidth. A good refractive index profile is best achieved through DMD testing.

    VCSELs and LOMMF provide tremendous flexibility and cost efficiency in “freeing up” bandwidth bottlenecks in the enterprise today and well into the future. LOMMF is completely compatible with LEDs and other fiber optic applications (there are no special connectors or termination required and no effect on attenuation). LOMMF can be installed now and utilized at slower data rates until the need arises to increase network speed to 1 or even 10 Gb/s. At that point, you only need to upgrade the optics modules to VCSEL-based transceivers. There is no need to pull new cable.

    >> Download Our Guide Now

    Can you use any laser-optimized fiber for 10 Gb/s?

    No — it is important to note that not all laser-optimized fiber is 10 Gb/s capable. If 10 Gb/s capacity is in your future, you must make sure that the LOMMF you’re installing now is capable of handling 10 Gb/s. The first laser-optimized fibers, introduced to the market in the mid-1990s, were designed for 1 Gb/s applications. Available in both 62.5/125 µm and 50/125 µm designs, these fibers extended the reach capability of 1 Gb/s systems beyond what the industry standards stated. For instance, OFS 1 Gb/s Laser Optimized 62.5 Fiber can go 300 meters in cost-effective, 1 Gb/s 850 nm (1000BASE-SX) systems. 50/125 µm fibers offer even greater performance, with a reach of 600 meters or more. These 1 Gb/s LOMMFs, coupled with 850 nm VCSELs, allow for the lowest systems cost for building backbones and short-to medium-length campus backbones

    How do you measure bandwidth for laser-optimized fiber?

    Since LEDs have a uniform and consistent power profile that excites all the modes in a multimode fiber, the traditional OFL method of bandwidth measurement accurately predicts bandwidth of fiber for LED applications. But because VCSELs only excite some of the modes in a fiber, and in a varying manner, the OFL bandwidth measurement cannot predict what the fiber’s bandwidth would be if the fiber were to be used in a VCSEL application.

    It should become clear now why fiber manufacturers developed laser-optimized fiber, and why DMD testing is so important. The refractive index has to be well designed and controlled to ensure that all modes exhibit minimal DMD and all arrive at the other end of the fiber at the same time. No matter which modes in the fiber are actually guiding the light, those modes will have minimal DMD and provide high bandwidth.

    What should you look for in DMD testing?

    DMD testing provides a clear picture of how individual mode groups carry light down the fiber, and which mode groups are causing DMD. In fact, that picture is so clear that the standards require fiber to be DMD-tested to ensure adequate bandwidth to the rated distances for 10 Gb/s applications.

    >> Download Our Guide Now

    Tony Irujo is sales engineer for optical fiber at OFS, a world-leading designer, manufacturer and provider of optical fiber, fiber optic cable, connectivity, fiber-to-the-subscriber (FTTx)and specialty photonics products. Tony provides technical sales and marketing support for multimode and single-mode optical fiber.

    Tony has 25 years of experience in optical fiber manufacturing, testing and applications. He started with SpecTran in 1993 as a quality and process engineer and transitioned to more customer-focused roles with Lucent and OFS. He represents OFS in the Fiber Optic LAN Section (FOLS) of the TIA, has authored several papers on fiber technology and applications and is a frequent speaker at industry events. Tony has a Bachelor of Science degree in Mechanical Engineering from Western New England College in Springfield, MA.

  2. Learning the ABCs of Fiber Optics

    Leave a Comment

    This image has an empty alt attribute; its file name is Learning-the-ABCs-of-Fiber-Optics.jpg

    Already known as the state’s first gigabit city, Wilson, North Carolina, is now also that state’s first city to offer a “Fiber Optics Basics” training course at its local community college. Last month, Wilson Greenlight, the city’s community-owned, fiber-to-the-home provider, partnered with Wilson Community College to launch the pilot 10-week program.

     

    A Long-Held Dream

    The fiber optic training course is the answer to a long-held dream for Gene Scott, Wilson Greenlight’s director of outside plant. Frustrated by having highly-skilled jobs to offer that he could not fill, Scott found that standard fiber training courses cost thousands of dollars that few young people could afford.

    Experts Share Knowledge/Expertise

    Visiting experts from around North Carolina and the U.S. are volunteering to teach their specialty. For example, OFS expert Mark Boxer is teaching three classes covering topics ranging from the history of light wave transmission to the design of various fiber optic networks.

    In one of these classes, Boxer featured a very special guest, Dr. Peter Charles Schultz. Dr. Schultz is a co-inventor of fiber optics and the recipient of the National Medal of Technology and Innovation presented by President Bill Clinton (the highest technology award of the U.S. Government). Dr. Schultz also serves as a senior advisor to and board member of OFS. During the class, Dr. Schultz described his experiences in developing fiber optics, something that few people at the time understood or valued. When asked his advice to others who might seek to blaze a new trail in the digital frontier, Schultz answered, “Be brave!”

    Training for Today and Tomorrow

    Other courses in the program range from how to prepare, splice and connect fiber optic cables to fiber optic safety. Instructors will expose students to various types of fiber networks, the basics on how to design a fiber-to-the-home network, how to maintain outside plant infrastructure and even how to budget and read engineering design prints.

    The long-range plan is to offer a two-year partnership between a local high school and the community college. Students would leave high school with a two-year certificate in an advanced degree and qualify for higher-paying jobs after graduation. One added advantage would be to pique students’ interest in tackling a four-year college degree in new fields like fiber network management