We use cookies to help us provide you with a more enhanced and personalized experience adapted to your interests.
By using our site you agree to our Terms of Use and Privacy Policy, including our use of cookies.
Exit

Tag Archive: fiber optic cable

  1. The “Wet Net” World of Underwater Fiber Optic Cables

    Leave a Comment

    You panic when even a few drops of water fall on your laptop. Everyone knows that water and electronics don’t “mix.” That’s why it seems so ironic that most of the Internet’s “hard” infrastructure lies underwater on the ocean floor.

     

    Virtually all global data travels through millions of miles of submarine fiber optic cables beneath the ocean’s surface. More than 350 submarine cable lines stretch from the U.S. West Coast to the East Coast, with many more being deployed around the world.

     

    Installing submarine fiber optic cables deep on the ocean floor is time consuming and expensive. While special ships deploy the cable, ocean divers repair and maintain the network. And even with thick, protective jackets, there are many ways to damage a cable. Some destructive forces include ship anchors, commercial fishing equipment, earthquakes, hurricanes and even sinister interference. (more…)

  2. 5G: What’s All the Hoopla About?

    Leave a Comment

    There’s been lots of excitement and even some “hype” around the idea of 5G. But what is it really? Does it mean just faster internet? Will it really be that much better than 4G? Many people are asking these questions as the FCC begins to auction the first licenses for the airwaves that will carry 5G service.

     

    What Is 5G, Really?

    5G will be up to 100 times faster than today’s cellular connections – and even faster than many home broadband services. But it’s not just about speed. Networks will have greater capacity and respond faster than earlier wireless services. More people and devices will work at the same time on the same network without slowing it to a crawl. And it will do all of this with lower latency. Latency is the time delay between a device contacting the network and receiving a response.

     

    This improved latency will help to bring about some of the most amazing tech trends on the horizon. And while 5G may not change your life right away, it will certainly bring some totally new technologies to life. For now, here are a few of the most exciting apps and technologies that 5G will enable.

     

    Promising 5G Applications

    Self-driving vehicles – Self-driving cars will be a common sight with the next generation of wireless service.  And 5G will make vehicle-to-vehicle communication happen – where cars can almost instantly share information between them on their location, speed, acceleration, direction and steering. Many experts believe that this feature will become the greatest lifesaving advance in the auto industry in more than a decade. Using this, cars will know before their drivers when another car moves into your blind spot or when a dump truck that’s six vehicles ahead suddenly stops.

     

    Telesurgery – Remote surgery isn’t new. However, 5G could make a huge difference in providing medical care to millions in distant locations, along with training doctors remotely in surgery and other specialties.

     

    Virtual Reality – For truly realistic virtual reality (VR), a wireless network must carry tons of data. And while it must be fast, the network must also handle this data deluge to create a life-like VR experience. It will take 5G to make this happen.

     

    Drones: 5G technology will let drones talk to one another, helping prevent overhead accidents while in flight.

     

    5G wireless networks can make many of the technologies, applications and experiences that we’ve been waiting for a reality.

  3. Could Fiber Optic Sensors Help Prevent Power Theft?

    Leave a Comment

    Fiber optic sensors could one day catch thieves who steal electricity and materials from overhead power lines. The UK firm Bandweaver recently demonstrated a distributed acoustic sensing (DAS) system that detects invasion and interruption on power lines. The system does this by using back-scattering effects along an optical fiber.

     

    The Cost of Tampering
    A major global problem is tampering and theft from power lines. In fact, this activity costs the electric industry an estimated $96 billion a year. Tampering can also interrupt power supplies and lead to operating losses for power companies and national grids.

     

    Detecting and identifying theft when it first happens is the key to solving this problem. The power industry generally sees current solutions as time consuming, inefficient and expensive.

     

    The Demonstration

    Working with Dominican Republic power company ELESUR and an infrastructure firm, Bandweaver installed its system at an ELESUR sub-station in Santo Domingo. The team hoped to show how the photonics technology could locate and identify any tampering with overhead lighting and distribution poles connected to a fiber optic cable. They believed that by continually watching just one optical fiber, the system could monitor the entire route for real-time threats 24/7 using existing fiber optic cables.

     

    The team installed the system and waited. When power company employees created different types of disturbances at random power line locations, the DAS system detected and located each problem.

     

    Conclusion
    Bandweaver believes that the demonstration’s success proved the ability of its system. The DAS system identified the exact location of each incident and then sent specific information to security systems and alerted company staff.

     

    Possibly the greatest value of the system is that it alerted the power company when a threat began. This “heads up” notification could help companies act before major damage is done. And this capability could help to reduce costs and improve system operations.

     

     

     

     

     

     

  4. Make Way for High-Density Fiber Optic Cables

    Leave a Comment

    More fiber density in less space. From 5G to data centers to FTTx, the picture is clear. Everyone uses more bandwidth than ever before. And while bandwidth demand may seem endless, the space to install fiber optic cable isn’t. That’s why being able to install more optical fiber in the same or less space can be a game changer for today’s network operators. And it’s why “High Density” is also a critical word for many service providers today.

     

    With microcables and rollable ribbon cables that increase fiber density while saving on space, OFS is your high-density fiber optic cable solutions provider.

     

    Rolling In the Optical Fiber

    Rollable Ribbon fiber optic cables are one of the most exciting outside plant (OSP) cabling technologies today. These cables feature rollable ribbons, the newest fiber ribbon design from OFS. This ribbon can be “rolled” (compacted) and routed like individual fibers, allowing the use of smaller closures and splice trays.

     

    With up to 3,456 fibers, OFS AccuTube®+ Rollable Ribbon (RR) Cables help network operators double their fiber density in the same size duct or space. They also enable very efficient, cost-effective mass fusion splicing and easy individual fiber breakout. This ability helps simplify installation and save on labor costs. And by maximizing duct use, high-density AccuTube+ RR Cables are an excellent choice for connecting very large fiber distribution hubs. They are also very suitable for data centers, FTTx and access networks.

     

    Taking Things Indoors……

    With the award-winning AccuRiser RR and AccuFlex® RR Cables, network operators can bring the benefits of rollable ribbon cables indoors. The innovative indoor/outdoor AccuRiser RR Cable helps ease cable installation over ladder racking and through tight bends during routing. This high-density cable is excellent for use in data centers or central offices. It’s also a great choice for building-to-building cable connections along with routing for terminations and frames, and preconnectorized applications.

     

    The strong yet flexible, plenum-rated AccuFlex RR Cable helps prevent installation problems such as packing density, routing and deployment speed. This cable’s flame rating meets NFPA 262, allowing the cable to be installed into air-handling spaces. The AccuFlex RR Cable is an outstanding solution for data centers, central offices and head ends.

     

    With Limited Space, Go Small (and Dense)

    To help solve the problem of deploying or upgrading crowded FTTx or underground networks, OFS created the high-density MiDia®Microcable family. Optimized for exceptional air-blown installation, MiDia microcables can help lower installation costs while increasing fiber optic density and capacity in limited spaces. The MiDia Cable portfolio includes MiDia Micro FX CableMiDia Micro GX Cable and MiDia200 Micro FX Cable.

     

    And for network operators who prefer ribbon cables and the benefits of mass fusion splicing, OFS offers the AccuRibbon® DuctSaver® FX Cable. This cable makes optimal use of valuable duct space. It also maximizes the key advantages of air-blown microduct installation: rapid deployment and service turn-up.

     

    To learn more about high-density fiber optic cables, visit our website or contact OFS at 1-800-fiberhelp.

     

     

     

  5. Fiber Optic Cables as Undersea Seismic Monitors?

    Leave a Comment

    Detecting ocean-floor seismic activity is crucial to our understanding of the interior structure and dynamic behavior of the Earth. However, with 70% of the planet’s surface covered by water and only a handful of permanent, ocean-bottom seismometer stations, very little overall seismic activity is actually recorded.

     

    Now, a group of researchers from the United Kingdom, Italy and Malta have found a way to use submarine fiber optic cables already deployed on the ocean floor as seismic detectors. In a paper published in the journal Science, the research group outlines how they discovered this capability and how it would operate.

     

    Giuseppe Marra, a member of the group, was testing an underground fiber cable between two locations in the United Kingdom. Noticing a small slowdown in signal delivery, he traced it to tiny vibrations bending the light. He then determined that the vibrations were caused by a remote earthquake. This discovery inspired him to explore using fiber optic cables as seismic detectors.

     

    (more…)


December 7, 2018 - Join us on December 20 for a webinar on “Fiber Optic Infrastructure Systems for Large-Scale Data Centers.” - Register Here! >>


December 7, 2018 - Roger Vaughn discusses “The Next Wave – Building Tomorrow’s Network Today” at January’s BICSI Winter Conference. - Learn More! >>


December 4, 2018 - The Prism Awards for Photonics Innovation selected FlightLinx® PLUS Specialty Avionics fiber optic cable as a finalist in the transportation category. - Learn More! >>